Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotoxicol Teratol ; 102: 107331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38301979

RESUMO

Bisphenol F (BPF) is a potential neurotoxicant used as a replacement for bisphenol A (BPA) in polycarbonate plastics and epoxy resins. We investigated the neurodevelopmental impacts of BPF exposure using Drosophila melanogaster as a model. Our transcriptomic analysis indicated that developmental exposure to BPF caused the downregulation of neurodevelopmentally relevant genes, including those associated with synapse formation and neuronal projection. To investigate the functional outcome of BPF exposure, we evaluated neurodevelopmental impacts across two genetic strains of Drosophila- w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We found that BPF exposure in w1118 Drosophila caused hypoactive larval locomotor activity, decreased time spent grooming by adults, reduced courtship activity, and increased the severity but not frequency of ß-lobe midline crossing defects by axons in the mushroom body. In contrast, although BPF reduced peristaltic contractions in FXS larvae, it had no impact on other larval locomotor phenotypes, grooming activity, or courtship activity. Strikingly, BPF exposure reduced both the severity and frequency of ß-lobe midline crossing defects in the mushroom body of FXS flies, a phenotype previously observed in FXS flies exposed to BPA. This data indicates that BPF can affect neurodevelopment and its impacts vary depending on genetic background. Further, BPF may elicit a gene-environment interaction with Drosophila fragile X messenger ribonucleoprotein 1 (dFmr1)-the ortholog of human FMR1, which causes fragile X syndrome and is the most common monogenetic cause of intellectual disability and autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Proteínas de Drosophila , Síndrome do Cromossomo X Frágil , Fenóis , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Síndrome do Cromossomo X Frágil/induzido quimicamente , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Transtorno do Espectro Autista/metabolismo , Corpos Pedunculados/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Drosophila , Compostos Benzidrílicos/toxicidade , Expressão Gênica
2.
Curr Protoc ; 2(10): e576, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36282085

RESUMO

Neurodevelopmental disorders are a heterogeneous group of behaviorally defined disorders with both genetic and environmental risk factors. Given that many neurodevelopmental disorders are characterized by impaired learning and/or intellectual abilities, behavioral paradigms that assess cognition in animal models have been effective tools in delineating underlying genetic variants that impact disease pathophysiology. For example, learning and memory paradigms in the common fruit fly Drosophila melanogaster have been successfully used to study risk genes and biological pathways associated with several neurodevelopmental disorders, including fragile X syndrome, autism spectrum disorder, and CHARGE syndrome. While these established Drosophila behavioral paradigms have historically been used to investigate genetic risk factors, they also have many other applications, including use in developmental neurotoxicology studies to determine environmental risk factors for neurodevelopmental disorders. There is, however, a deficit of step-by-step protocols that describe how to apply learning and memory assays in fruit flies to developmental neurotoxicology studies. Here, we describe two quantitative behavioral paradigms for Drosophila-predator-induced oviposition and courtship conditioning-that can be used to measure different forms of learning and memory in the context of a developmental neurotoxicology study. Non-associative learning and memory are measured here by examining female Drosophila oviposition behavior in response to endoparasitoid wasps, while associative learning and memory are measured in males using courtship conditioning. Our protocols outline procedures for oral toxicant exposure of developing fruit flies, culturing of endoparasitoid wasps, measuring Drosophila oviposition activity, and assessing conditioned courtship in order to identify the impact of toxicants on learning and memory in both females and males. As an example, we present the protocols using bisphenol A, a chemical utilized in the synthesis of polycarbonate plastics, to determine its impacts on learning and memory. These protocols are inexpensive and relatively simple to perform, and can be used by labs that are new to Drosophila behavioral research to evaluate how toxicant exposure influences learning and memory in male and female flies. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of toxicant-containing food and developmental exposure Basic Protocol 2: Predator-induced oviposition assay Support Protocol: Culture of Leptopilina heterotoma Basic Protocol 3: Conditioned courtship assay.


Assuntos
Transtorno do Espectro Autista , Vespas , Animais , Masculino , Feminino , Drosophila melanogaster/genética , Aprendizagem/fisiologia , Drosophila , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...